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The influence of inertia and elasticity on the onset and stability of Taylor-vortex flow
(TVF) is examined for an Oldroyd-B fluid. The Galerkin projection method is used
to obtain the departure from Couette flow (CF). Only axisymmetric flow is examined.
The solution is capable of capturing the dynamical behaviour observed experimentally
for viscoelastic fluids in the inertio-elastic and purely elastic ranges. For flow with
dominant inertia, the bifurcation picture is similar to that for a Newtonian fluid.
However, transition from CF to TVF is oscillatory because of fluid elasticity. Steady
TVF sets in, via supercritical bifurcation, as Re reaches a critical value, Rec. The
critical Reynolds number decreases with fluid elasticity, and is strongly influenced by
fluid retardation. As elasticity exceeds a critical level, a subcritical bifurcation emerges
at Rec, similar to that predicted by the Landau–Ginzburg equation. It is found that
slip along the axial direction tends to be generally destabilizing. The coherence of the
formulation is established under steady and transient conditions through comparison
with exact linear stability analysis, experimental measurements, and flow visualization.
Good agreement is obtained between theory and the measurements of Muller et al.
(1993) in the limit of purely elastic overstable TVF.

1. Introduction
While the problem of Taylor–Couette flow (TCF) has been extensively investigated

for Newtonian fluids, relatively little attention has been devoted to the case of
viscoelastic fluids. Flow instability and turbulence is far less widespread in viscoelastic
fluids than in Newtonian fluids because of the high viscosity. Recently, however, there
has been a growing interest in the TCF of viscoelastic fluids (see Larson 1992;
Shaqfeh 1996 for reviews). Recent linear stability analyses and experiments indicate a
dramatic departure in the stability and bifurcation picture of TCF of viscoelastic fluids
in comparison with Newtonian fluids. Baumert & Muller (1995, 1999) carried out flow
visualization on the TCF of dilute solutions of high-molecular-weight polyisobutylene
in oligometric polybutene. Rheological measurements of these solutions confirm that
they are of the Boger fluid type (highly elastic with constant viscosity). Using reflective
mica platelet seeding, they monitored the transition from the purely azimuthal Couette
flow (CF) to the toroidal Taylor-vortex flow (TVF) by varying the shear rate. For a
moderately elastic fluid, their experiment suggests that transition can be monotonic
or oscillatory with time depending on whether the level of shear rate is low or
high. Axially migrating mica alignment bands begin to appear, but band formation
ceases with steady vortices setting in after some time. At this point, steady TVF is
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observed to persist for a long time (Baumert & Muller 1995). The transition appears
to always occur through axisymmetric TVF before wavy vortex flow (WVF) sets in
at higher shear rates. This observation was also confirmed recently when the wide-
gap flow was examined (Baumert & Muller 1999). However, the absence of a direct
transition from CF to WVF is in contradiction with theoretical predictions (Joo &
Sahqfeh 1992; Avgousti & Beris 1993; Sureshkumar, Beris & Avgousti 1994), which
indicate that non-axisymmetric disturbances are more dangerous than axisymmetric
ones. The discrepancy between theory and experiment seems to stem from the type
of constitutive model usually adopted in the analyses (Larson, Muller & Shaqfeh
1994); the absence of a distribution of relaxation times in the theoretical constitutive
model seems to cancel out the neglect of non-axisymmetric modes in the stability
analysis.

For highly elastic (Boger) fluids, normal stress effects (which lead to the Weis-
senberg rod-climbing phenomenon) prohibit the onset of steady TVF. Only sustained
oscillatory TVF is observed for flow with negligible inertia (Muller, Shaqfeh & Lar-
son 1993). The emergence of overstability in the absence of inertia is one of the
most interesting phenomena encountered in the TCF of viscoelastic fluids. The ex-
istence of such a purely elastic overstable mode was proved through linear stability
analysis (Larson, Shaqfeh & Muller 1990) and finite-element calculations (Northey,
Armstrong & Brown 1992). Muller et al. (1993) conducted laser Doppler velocimetry
(LDV) measurements of the axial velocity component of a polyisobutylene-based
(Boger) fluid between two concentric cylinders, with the outer cylinder being at rest,
and the inner cylinder rotating at constant angular velocity. The measurements show
an oscillatory flow at a vanishingly small Reynolds number (Re ≈ 7 × 10−3). The
flow undergoes a transition from CF to time-periodic TVF as the Deborah number,
De, exceeds a critical value, Dec. Here De is the ratio of the relaxation time of the
fluid to a typical hydrodynamic time for the problem. The value of Dec is in good
agreement with that predicted by earlier linear stability analysis of an Oldroyd-B
fluid (Shaqfeh, Muller & Larson 1992). The LDV measurements show that the os-
cillatory behaviour is not localized but appears to be spread throughout the flow.
As De increases from the critical value, the amplitude of oscillation increases like
(De−Dec)1/2. The corresponding power density spectra show peaks, which are instru-
mentally sharp at the fundamental frequency, the growth of harmonics, and eventually
subharmonics, reflecting, perhaps, the presence of a period-doubling or quasi-periodic
motion.

The present paper is a theoretical attempt to (i) reproduce the phenomena observed
by Baumert & Muller (1995) on the interplay between inertia and elasticity during
the transition from CF to steady TVF, and the flow sequence observed by Muller
et al. (1993) on purely elastic overstability after the onset of oscillatory TVF; (ii)
predict flow behaviour for ranges of flow conditions not covered by experiments; (iii)
evaluate the influence of higher-order modes neglected previously (Khayat 1995c);
and (iv) assess the use of rigid–free and rigid–rigid boundary conditions (Kuhlmann
1985).

The aim is to investigate the onset and stability of finite-amplitude TVF with elastic
effects dominating over inertia. It is shown that purely elastic overstability can only
be predicted if the higher-order normal stress terms are properly accounted for. These
terms were neglected in the previous formulation (Khayat 1995c). Particularly, the
addition of the azimuthal normal stress component τθθ leads to additional coupling
with higher-order eigenmodes that cannot be neglected. The resulting nonlinear
dynamical system involves sixteen instead of six degrees of freedom. Although more
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cumbersome, and therefore less amenable to algebraic manipulations, the present
expanded model is more accurate in its predictions, and leads to good agreement with
existing formulations and experiments. Additional calculations are also carried out in
the absence of inertia, based on a dynamical system that accounts for yet higher-order
normal stresses (20NDS), in an attempt to reach a quantitative agreement with the
measurements of Muller et al. (1993).

A flow sequence similar to that reported by Muller et al. (1993) was previously pre-
dicted by the six-dimensional nonlinear dynamical system (6NDS) of Khayat (1995c).
Only a qualitative agreement between theory and experiment was previously possi-
ble, as the model is not adequate for the investigation of purely elastic overstability
(highly elastic flow). It was found that the presence of inertia, no matter how small it
may be, prohibits CF from losing its stability directly to oscillatory TVF (overstable
mode). Instead, CF loses its stability first to steady TVF since there is always a
finite range of Re values over which steady TVF is stable. A similar sequence of
flow was also obtained from the finite-element calculations (with inertia neglected) of
Northey et al. (1992) for an upper-convected Maxwell (UCM) fluid. These authors,
however, report having numerical difficulties in obtaining the solution at the higher
Deborah numbers (possibly coinciding with the onset of period doubling). Their
calculations are thus limited to an extremely small range of postcritical Deborah
numbers.

Recent theoretical work, for axisymmetric and non-axisymmetric flows, has also
been examining the linear stability of viscoelastic fluids (Larson et al. 1990; Shaqfeh
et al. 1992; Joo & Shaqfeh 1992), and nonlinear stability as well (Avgousti, Liu
& Beris 1993; Avgousti & Beris 1993; Northey et al. 1992). New phenomena are
constantly being attributed to fluid elasticity (Groisman & Steinberg 1996, 1997).
Unlike Newtonian fluids, which obey Newton’s law of viscosity, viscoelastic fluids
are not governed similarly by a universal constitutive law. The dependence of the
predicted flow behaviour on the particular choice of a constitutive model adds another
difficulty in our attempt to interpret an already complex flow situation, particularly
in the transition and turbulent regimes. Larson (1989) carried out a linear stability
analysis in the narrow-gap limit, using the Doi–Edwards and K-BKZ constitutive
equations. He found that the dependence of Rec on De is generally non-monotonic,
but the flow is increasingly destabilized by fluid elasticity in the higher De range
(Larson 1989).

Similarly to any flow in the transition or turbulent regime, TCF involves a continu-
ous range of excited spatio-temporal scales. In order to assess the effect of the motion
of the arbitrarily many smaller length scales, one would have to resolve in detail the
motion of the small scales. This issue remains an unresolved one since, despite the
great advances in storage and speed of modern computers, it will not be possible to
resolve all of the continuous range of length scales in the transition regime. It is by
now well established that low-order dynamical systems constitute an alternative to
conventional numerical methods as one strives to understand the nonlinear behaviour
of flow (Sell, Foias & Temam 1993; Shirer & Wells 1980). These methods are based
on the expansion of the flow field in terms of complete sets of orthogonal functions,
Fourier series or other standard basis functions. The Galerkin projection method is
used, whereby the initial set of partial differential equations is decomposed into an
infinite set of ordinary differential equations governing the time-dependent expansion
coefficients. The system is then truncated, leading to the finite-dimensional dynamical
system. These methods have mainly been applied to Newtonian fluids, and the author
appears to be the first to extend their application to non-Newtonian fluids, in thermal
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convection (Khayat 1994, 1995a, b, 1996), rotating flow (Khayat 1995c, 1997), and
channel flow (Ashrafi & Khayat 1999).

Our earlier work (Khayat 1995c) focused on the influence of elasticity and retar-
dation on the stability and amplitude of the Taylor vortices with inertia dominating
the flow. A truncated Fourier representation with Galerkin projection of the flow
field similar to that of Kuhlmann and associates for a Newtonian fluid was proposed.
Kuhlmann (1985), and later Kuhlmann, Roth & Lücke (1988) examined the station-
ary and time-periodic TVF, in the narrow-gap limit and for arbitrary gap width,
respectively, with the inner cylinder rotating at constant and harmonically modulated
angular velocity. The solution to the full Navier–Stokes equations was obtained by
implementing a finite-difference scheme, and the approximate approach based on the
Galerkin projection. Comparison of flows based on the two methods led to good
agreement. Since elastic effects in Khayat (1995c) were assumed to be weak, higher-
order normal stress terms were neglected, thus leading to a six-dimensional nonlinear
system (6NDS), and reducing to Kuhlmann’s three-dimensional system (3NDS) for a
Newtonian fluid (Khayat 1995c). While the two models suffer from a similar level of
truncation, the addition of the viscoelastic effect, even to a very weak extent, appears
to alter dramatically the stability and bifurcation picture. Most importantly, elasticity
tends to destabilize the TVF, leading to chaotic behaviour and the emergence of
a Lorenz type attractor. As the Deborah number increases, the onset of TVF oc-
curs at a Reynolds number that decreases with De. Beyond a critical De value, the
exchange of stability takes place via a subcritical instead of a supercritical bifurca-
tion. Since the previous formulation (Khayat 1995c) is not adequate for flow with
dominant elastic effects, most results from existing linear analyses, finite-amplitude
numerical calculations, and experiments on the purely elastic overstability could not
be recovered.

The paper is organized as follows. In § 2, the derivation of the nonlinear dynamical
system is discussed. The steady-state solutions and their stability are examined in
§ 3. The influence of inertia for weakly and strongly elastic flows is examined in § 4,
as well as comparison between theory and experiment. Discussion and concluding
remarks are covered in § 5.

2. Problem formulation and solution procedure
Consider an incompressible viscoelastic fluid of density ρ, relaxation time λ and

viscosity η. In this study, only fluids that can be reasonably represented by a single
relaxation time and constant viscosity are considered. The fluid is confined between
two infinite and concentric cylinders of inner and outer radii Ri and Ro, respectively.
The flow is assumed to be axisymmetric. The inner cylinder is taken to rotate at an
angular velocity Ω, while the outer cylinder is at rest. Typically, the fluid examined
is a polymer solution composed of a Newtonian solvent and a polymer solute of
viscosities ηs and ηp, respectively. Thus, η = ηs + ηp.

2.1. General equations and boundary conditions

The conservation of mass and linear momentum equations may be, respectively,
written as

∇ ·U = 0, ρ

(
∂U

∂T
+U∇ ·U

)
= −∇P + ηs∇2U + ∇ · T , (1)
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where ∇ is the gradient operator, T is the time, U is the velocity vector and T is
the elastic part of the deviatoric stress tensor in the (R,Θ,Z ) system. In this work,
the fluid is assumed to obey the Oldroyd-B constitutive model (Bird, Armstrong &
Hassager 1987) so that T is governed by the following equation:

λ

[
∂T

∂T
+U · ∇T − (∇U )t · T − T · ∇U

]
= −T + ηp

[∇U + (∇U )t
]
. (2)

The boundary conditions on the cylinder walls are prescribed as follows. Regardless
of the nature of the two cylinders, the no-penetration condition must apply at any
time. Rigid (stick) conditions are assumed to hold on the walls in the azimuthal
direction. Along the axial direction, rigid (stick) or free (slip) conditions can be
assumed, leading, respectively, to the rigid–rigid (RR) or rigid–free (RF) boundary
conditions for the problem. The introduction of the RF conditions is customary for
Newtonian flows (Kuhlmann 1985; Kuhlmann et al. 1988), and should be compared
to the free-surface assumption usually adopted in the Rayleigh–Bénard convection
problem (Shirer & Wells 1980; Veronis 1966; Drazin & Reid 1981; McLaughlin &
Martin 1975). This is equivalent to having the cylinders lubricated along the axial
direction. In thermal convection, both the lower and upper planes, which are separated
by the fluid, are assumed to be free surfaces. This is not a realistic assumption, but it
makes the problem formulation much easier to handle since trigonometric rather than
hyperbolic (Chandrasekhar) functions can be used in the expansion of the solution
along the gap.

For TCF, a slip along the Z-direction precipitates the onset of Taylor vortices given
the absence of axial friction. In the narrow-gap limit, linear stability analysis for a
Newtonian fluid gives the minimum value of the critical Rec(k) and corresponding
wavenumber, km, for the onset of TVF, respectively, as Remc = 41.2/

√
ε and km = 3.12

if RR conditions are assumed (McLaughlin & Martin 1975), and Remc = 25.6/
√
ε

and km = 2.23 (Kuhlmann 1985) if RF conditions are used. The neutral stability
curves in both cases are qualitatively similar. While RR conditions tend to give more
accurate values for Remc and km, RF conditions lead to a torque value at the onset
of TVF that is much closer to what existing formulations predict (Kuhlmann 1985;
Kuhlmann et al. 1988; Davey 1962; Stuart 1958). As to the nonlinear range, both
RR and RF conditions have been used with the same level of truncation (Kuhlmann
1985). The two models lead essentially to the same qualitative behaviour. Based on
these arguments, one may then suspect that a similar conclusion can be drawn in
the case of a viscoelastic fluid. This is indeed confirmed in the present study through
comparisons with existing linear stability analysis results, experimental measurements
and flow visualization. Aside from giving a more accurate torque estimate at the onset
of TVF, RF conditions lead to equations that reduce to the 6NDS studied earlier
(Khayat 1995c), thus allowing the examination of the influence of the higher-order
modes neglected previously. These equations, in turn, reduce further to the Lorenz
system for a Newtonian fluid, a system extensively investigated in the past thirty years
or so (Sparrow 1983).

2.2. Governing equations in the narrow-gap limit

Consider the flow between two concentric cylinders in the limit when the radius
Ri/Ro is very close to 1. Suitable scales are sought for length, time, velocity and
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stress as follows:

x =
R − Ri
d

, z =
Z

d
, t =

RiΩ

d
T ,

(ux, uz) =
1

RiΩ
(UR,UZ ), uy =

UΘ

RiΩ
√
ε
, (τxx, τzz, τxz) =

d

ηRiΩ
(TRR, TZZ , TRZ ),

p =
d

ηRiΩ
P , (τxy, τzy) =

d

ηRiΩ
√
ε
(TRΘ, TZΘ), τyy =

d

εηRiΩ
TΘΘ.


(3)

Substitution of expressions (3) into (1) and (2) leads to important dimensionless
groups in the problem, namely the Reynolds number, Re, the Deborah number, De,
the solvent-to-solute viscosity ratio, Rv, and gap-to-radius ratio, ε:

Re =
RiΩd

ν
, De =

λRiΩ

d
, Rv =

ηs

ηp
, ε =

d

Ri
, (4)

where ν = η/ρ is the kinematic viscosity of the fluid solution. Another important
group, the Elasticity number, E=De/Re= λν/d2, will also be used. Unlike De, E
depends only on the properties of the fluid. The equations governing the departure
from the CF are then derived by expanding the flow field in powers of ε, and excluding
terms of O(ε) and higher. Thus, the continuity and momentum conservation equations
reduce to

ux,x + uz,z = 0, (5)

Rebux,t + uxux,x + uzux,z − u2
y − 2(1− x)uyc
= τxx,x + τxz,z − τyy − p,x + aRv(ux,xx + ux,zz), (6)

Re(uy,t + uxuy,x + uzuy,z − ux) = τxy,x + τzy,z + aRv(uy,xx + uy,zz), (7)

Re(uz,t + uxuz,x + uzuz,z) = τxz,x + τzz,z − p,z + aRv(uz,xx + uz,zz), (8)

whereas the constitutive equation (2) leads to

De[τxx,t + uxτxx,x + uzτxx,z − 2(ux,xτxx + ux,zτxz)] = −τxx + 2aux,x, (9)

De{τyy,t + uxτyy,x + uzτyy,z − 2b(uy,x − 1)τxy + auy,x + uy,zτyzc} = −τyy, (10)

De[τzz,t + uxτzz,x + uzτzz,z − 2(uz,xτxz + uz,zτzz)] = −τzz + 2auz,z , (11)

De{τxy,t + uxτxy,x + uzτxy,z

−bux,x(τxy + a) + ux,zτyz + (uy,x − 1)τxx + uy,zτxzc} = −τxy + auy,x, (12)

De[τxz,t + uxτxz,x + uzτxz,z − (uz,xτxx + ux,zτzz)] = −τxz + a(ux,z + uz,x), (13)

De{τyz,t + uxτyz,x + uzτyz,z

−buz,x(τxy + a) + uz,zτyz + (uy,x − 1)τxz + uy,zτzzc} = −τyz + auy,z , (14)

where a comma denotes partial differentiation, and a = 1/(Rv + 1) = ηp/η is the
polymer-to-solution viscosity ratio.
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2.3. Solution procedure

The solution of (1) and (2) is carried out using the Galerkin projection method. The
variables ui(x, z, t), p(x, z, t) and τij(x, z, t) are represented by infinite Fourier series
of fundamental wavelength π/k (in units of d) in the z-direction, and complete sets
of orthogonal functions satisfying the boundary conditions in the x-direction. After
elimination of the pressure in the momentum equations, the flow variables can be
written as spectral sums:

ui(x, z, t) =
∑
m,n

umni (t)eimkzfni (x), τij(x, z, t) =
∑
m,n

τmnij (t)eimkzgnij(x), (15)

where fni (x) and gnij(x) are trigonometric or Chandrasekhar (1961) functions depending
on whether the RF or the RR boundary conditions are used, respectively. The number
of modes is reduced by invoking the symmetry allowed by equations (1) and (2) as the
flow is invariant under z → −z, and uz → −uz , ταz → −ταz (α = x, y). This amounts
to having invariance in the flow when the Taylor–Couette apparatus is turned upside
down (Marcus 1984).

A suitable level of truncation is imposed that leads to the final nonlinear dynamical
system. A judicious selection process is applied for the choice of the various modes in
order to ensure the physical and mathematical coherence of the final model. Based on
the comparisons with the exact results from linear stability analysis and experiment,
only two fundamental modes in the z-direction and two modes in the x-direction
appear to be sufficient to capture qualitatively most of the experimental observations
of Baumert & Muller (1995) on the influence of inertia. This truncation level leads
to a 16-dimensional nonlinear dynamical system (16NDS), where zeroth-order modes
have been neglected except for uy and τxy . The modal representations for the RF and
the RR formulations are given in Appendices A and B, respectively. In the absence
of inertia, additional terms in the normal stress components turned out to be needed,
leading to a 20NDS model where the zeroth-order modes are included for all stress
components (Khayat 1997). As will be seen below, the inclusion of more modes in
the normal stress components appears to be crucial for good quantitative agreement
with the experimental measurements of Muller et al. (1993) to be reached.

3. Linear stability analysis
In this section the linear stability of the CF and the TVF are examined. For small

values of E (or De) and Rv, inertia effect is important, and one expects the stability
picture to be similar to that of a Newtonian fluid. In this case, flow stability is
monitored by increasing inertia for a fluid of a fixed level of elasticity. As E increases,
the stability picture changes, giving rise to a periodic solution, or overstability, which
is the result of normal stress effects.

3.1. Stability of the Couette flow

Although the emphasis will be on the influence of inertia on the stability of a vis-
coelastic fluid, it is helpful to start with the stability of a purely elastic fluid as an
exact solution is easier to obtain for the eigenvalue problem. For an upper-convected
Maxwell (UCM) fluid (Rv= 0), the eigenvalue of the problem may be written as
Λ = 2εDe2/k(1− iωDe)2, where ω is the complex frequency (Larson et al. 1990). There
is an exact solution of the eigenvalue problem for both the RR and RF conditions,
which is obtained using the direct method. The eigenvalue Λ is found to be imaginary,
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Figure 1. Influence of boundary conditions and comparison between approximate and exact neutral
stability for the onset of purely elastic oscillatory TVF. Marginal curves for a UCM fluid (Rv = 0).
Note that the inset shows the exact marginal curves.

leading to the same dispersion relation as that of Larson et al. (1990). The exact mini-
mum critical Deborah number Demc =Dec(k= km) and corresponding wavenumber, km,
for the onset of the most unstable (overstable) mode are, respectively, Demc = 5.77/

√
ε

and km = 4.44 for the RF conditions, compared to 5.92/
√
ε and 6.7 for the RR condi-

tions. Here Dec(k) is the critical Deborah number, for a given k, at which oscillatory
TVF (overstability) sets in. The exact solution to the eigenvalue problem gives an
estimate of the magnitude of the error resulting from the truncation in solution. One
should expect that the error remains of the same order when such a truncation is ap-
plied to the solution of the full nonlinear equations for small departure from CF. Fig-
ure 1 shows the exact neutral stability curves based on the RF and RR conditions, the
latter being the same as the exact solution of Larson et al. (1990), and the correspond-
ing approximate curves. All four marginal curves exhibit similar behaviour. At small
k, Dec decreases sharply with k, reaches a minimum at k= km, and increases again for
k > km. All curves indicate a general flattening around km, confirming the experimen-
tally observed wide range of wavenumbers for which overstability sets in (Baumert
& Muller 1995; Larson 1992). The figure indicates a close quantitative agreement
between the exact and approximate solutions for k < km. This holds for both the RF
and RR conditions. As to the influence of boundary conditions, the figure shows that
the type of boundary conditions is more influential at small wavenumber. The quali-
tative behaviour is, however, the same regardless of the type of boundary conditions
used.

In the presence of inertia, Joo & Shaqfeh (1992) carried out the numerical solution
of the linear stability problem using the RR boundary conditions, and examined the
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Figure 2. Influence of fluid elasticity and marginal stability curves for a UCM fluid (Rv = 0) based
on the RR boundary conditions and ε = 0.01. The results of Joo & Shaqfeh (1992) are included in
the inset.

influence of elasticity for a UCM fluid. Figure 2 displays the neutral stability curves
in the (Re, k)-plane for the onset of steady TVF for 0 6 De 6 15 and ε= 0.1. Again,
let Rec(k, De) be the critical Reynolds number at given k and De. The exact results of
Joo & Shaqfeh are included in the inset, which compare well with the curves based
on the 16NDS model. For all De values, Rec(k, De) decreases roughly like 1/k2 near
k= 0, reaches a minimum, Remc (De), at k = km, and then increases roughly like k2

for large k. There is a shift in the value of km towards the right as De increases,
thus reflecting the greater difficulty in observing axisymmetric Taylor vortices in the
case of highly elastic fluids. On the other hand, this minimum becomes less localized
with increasing fluid elasticity, resulting in a wider range of wavenumbers at which
Taylor vortices set in. However, for De > 10, the neutral curves show again a very
localized minimum, with an increasingly narrower range of wavenumbers for CF to
lose its stability to steady TVF. For a given k value, Rec decreases generally with
De roughly like 1/De. This is, perhaps, the most important result in figure 2: fluid
elasticity tends to precipitate the onset of axisymmetric Taylor vortices at any value
of the wavenumber in the axial direction.

3.2. Stability of the Taylor-vortex flow and bifurcation

For E < Esub, there is an exchange of stability, similar to the Newtonian case, between
the origin (CF) and the two branches C1 and C2 (steady TVF) via a supercritical
bifurcation at Re = Rec (E, Rv, k). As was established above, Rec becomes increasingly
smaller as E increases. For E > Esub, the bifurcation is subcritical. In both regimes, as
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Figure 3. Bifurcation diagrams and influence of higher-order modes for a UCM fluid (Rv = 0)
with k = 3 and ε = 0.01. Steady-state solutions are plotted against the normalized Reynolds
number: r(k) = Re/ReNewtc (k), where ReNewtc (k) is the critical Reynolds number for the onset of TVF
for a Newtonian fluid. Super- and subcritical bifurcations for weakly and strongly elastic flows
corresponding, respectively, to E < Esub and E > Esub. For the subcritical curves, the stable regions
are indicated by breaks in the curves and are delimited by two arrows. Inset shows bifurcation
diagrams based on lower-order theory (6NDS of Khayat 1995c) with Esub = 0.014.

Re increases and reaches a second critical value Reh(E, Rv, k), the branches C1 and
C2 lose their stability in turn via a Hopf bifurcation. This bifurcation and stability
picture has already been established on the basis of the 6NDS mode (Khayat 1995c)
and is next confirmed when higher-order modes (16NDS) are included.

The influence of fluid elasticity on the bifurcating branches at Re=Rec is depicted
in figure 3 for a UCM fluid (Rv= 0) and k= 3. These curves correspond to the RF
formulation, and are compared with the bifurcation diagrams from Khayat (1995c)
included in the inset. Because of symmetry with respect to the Re-axis, only one set
of branches (C1) is shown. There are several important aspects to be observed from
figure 3 and the inset therein. The first is that there is a strong dependence of Rec on
fluid elasticity. For small E, there is a supercritical bifurcation at Re = Rec, with Rec
becoming increasingly smaller as E increases, and decreasing all the way to zero. At
the critical value E = Esub(Rv, k), which in this case is equal to 0.018, the bifurcation
changes from super- to subcritical. In the supercritical regime, when Re < Rec, a small
disturbance of the base flow decays exponentially according to linear stability theory.
As Re exceeds Rec, linear stability theory predicts exponential growth of a small
disturbance from CF. This growth is, however, halted by the stabilizing nonlinear
effects.
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In the subcritical regime (E > Esub), when Re < Reg (shown here for the curve
E = 0.05), the base flow is globally asymptotically stable (Drazin & Reid 1981).
When Reg < Re < Rec, two solutions exist for the disturbance from the CF for
the C1 branch. In this case, any disturbance below a certain threshold decays to
the origin (CF). Above the threshold value, the CF is destabilized. In this range
of Re values, the flow is commonly defined as metastable (Normand & Pomeau
1977). Whether the bifurcation at Rec is subcritical or supercritical, the TVF loses
its stability at some critical Re = Reh > Rec (shown here for the curve E = 0.05).
This second bifurcation is absent for Newtonian fluids. Thus, the presence of fluid
elasticity appears to be a sufficient condition for the loss of stability of TVF. Indeed,
at Re = Reh(E, Rv, k) > Rec, linear stability analysis around C1 and C2 indicates that
these two branches lose their stability via a Hopf bifurcation. In figure 3, the range
of Re values for which the branch C1 is stable (for E > Esub) is indicated by breaks
in the lines between two arrows. It is observed from the figure that, for highly elastic
fluids (E > 1), the range of stability of the C1 (and C2) decreases essentially to zero,
so that the (steady) TVF is unstable for any postcritical Re value.

4. Finite-amplitude TVF and comparison with experiment
The influence of inertia and elasticity on weakly and strongly elastic flows is exam-

ined in some detail, including purely elastic (zero inertia) flow. A weakly (strongly)
elastic flow is defined as one with E < Esub (E > Esub) for the exchange of stability be-
tween CF and TVF to occur via a supercritical (subcritical) bifurcation. Comparison
is carried out between theory and the experiments of Baumert & Muller (1995) and
Muller et al. (1993). The results are also compared with the numerical calculations of
Avgousti et al. (1993) whenever possible.

4.1. Influence of inertia on weakly elastic flow

Consider the transition of weakly elastic flow as the shear rate (measured by De) is
increased. The aim of the present calculations is to reproduce some of the experimental
observations of Baumert & Muller (1995) as the CF loses its stability to TVF,
and predict what may happen for the range of higher shear rate not covered by
experiment. Given the uncertainty in the experimental values of the relaxation time,
λ, and the wavenumber, k, and the assumptions adopted in the derivation of the
low-dimensional dynamical system, only a qualitative agreement can be expected.
The influence of inertia on a moderately weakly elastic Oldroyd-B fluid is examined
by fixing E and varying De (or, equivalently, varying Re). The case of a fluid with
E = 0.16 is considered, which corresponds roughly to the low-viscosity Boger fluid
used by Baumert & Muller (1995), with ρ = 0.856 g cm−3, ηs = 2.6 P and η = 3.0 P. The
experimental relaxation time was found to be equal to λ = λs = 0.021 s or λt = 0.11 s
(Es = 0.164 or Et = 0.94), depending, respectively, on whether steady shear or transient
measurement was used. The value of the viscosity ratio is Rv = 6.5. Figure 4 shows the
time evolution of the (dimensional) axial velocity component Uz midway through the
gap. The evolution of the velocity is displayed for 13 < De < 14 (81.25 < Re < 87.5),
above the critical shear rate, Dec ≈ 13 (Rec ≈ 81.25). The curves in the figure are
similar to the results reported in figure 1 of Avgousti et al. (1993), and the trend is in
agreement with the observations of Baumert & Muller (1995) for low- and medium-
viscosity fluids. The initial condition taken for all the curves in figure 4 corresponds
to a slight perturbation form CF.

Typically, the flow evolves monotonically from CF to steady TVF over a period of
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Figure 4. Monotonic time evolution of the axial velocity for different shear rates (13 < De < 14)
and small initial perturbation of the base flow (E = 0.16, Rv = 6.5, k = 3.5 and ε = 0.093).

time, TCF/TVF , which decreases with increasing shear rate as depicted from figure 4.
This behaviour is in agreement with the measurements of Baumert & Muller (1995).
Figure 5 displays the time after shear initiation of the appearance of steady vortices
as a function of De (shear rate). An inset showing the values from experiment (for
Es = 44) is also included for comparison, and reveals good qualitative agreement
with theoretical predictions. At higher shear rates, theory predicts that TCF/TVF
begins to increase with De. This is depicted in figure 4 for the curves corresponding
to De > 13.2, which show a local depression in the flow amplitude before steady TVF
sets in. In fact, as De is further increased, oscillatory behaviour emerges before the
onset of steady TVF as shown in figure 6 for 17 < De < 18. The secondary flow gains
strength initially at a much faster rate than for the lower range of shear rates (figure
4). The amplitude of oscillation decays with time until the onset of steady TVF, but
the frequency appears to remain constant. As De increases, the overall amplitude of
oscillation increases, and is accompanied by a phase shift and delay in the onset of
steady TVF. Eventually, oscillatory behaviour is sustained for longer time for higher
De values. In the limit, no steady TVF is found.

Consider now the influence of the initial conditions on the ensuing flow behaviour.
Baumert & Muller (1995) report that ‘flow behaviour was not found to be particularly
sensitive to the type of velocity ramp imposed’ initially. This observation is confirmed
here by taking as initial conditions the steady TVF reached before increasing the
shear rate, instead of starting again from near CF as in figures 4 and 6. The resulting
sequence of initial flow transients is depicted in figure 7 for the range 16 < De < 21.
The figure displays the evolution of flow over a period of 54 000 s, subdivided into
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Figure 5. Time after shear initiation of the appearance of steady vortices as a function of the
shear rate (De). The values in the figure are based on the curves in figure 4. The inset shows the
experimental measurements of Baumart & Muller (1995) for a medium viscosity fluid.

three equal periods of 18 000 s. The first segment is shown in figure 7(a) for the
range of shear rates corresponding to 16 < De < 19. Comparison between the curves
in figure 6 and those in figure 7(a) indicates that the flow behaviour is essentially
unaffected by initial conditions. It is interesting to note the similarity in the emergence
and decay of oscillatory behaviour between one steady level and the other. The figure
clearly shows that the time that steady TVF takes to set in increases with shear rate.
This is a result of the oscillatory transition that takes a longer time for the higher
shear rate. This is indeed even more evident from figure 7(b), which shows, for the
range 18 < De < 20, that steady TVF does not even set in over the time period over
which the shear rate is applied. The oscillations tend to decay at a slower rate as De
increases, and eventually start to grow with time as indicated in the last portion of
figure 7(b), corresponding to De = 19.26. This growth, which is linear upon onset, does
not remain unstable over time as linear stability analysis suggests. At some time, when
the signal amplitude is large enough, nonlinear effects become significant and halt the
(exponential) growth. The bifurcation diagrams in figure 3 suggest that steady TVF
is possible as long as De (or Re) is below Deh (E, Rv, k) (or Reh). This corresponds
to the onset of a Hopf bifurcation at De=Deh when steady TVF becomes periodic.
For the present flow in figure 7, Deh is found to be approximately equal to 19.

In figures 7(a) and 7(b), and for the range 16 < De < 19.15, the computation is
limited to flow with final state that corresponds to a standing wave (steady TVF).
This also corresponds to most of the range of shear rates examined in the experiment
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Figure 6. Oscillatory time evolution of the axial velocity for different shear rates (17 < De < 18)
and small initial perturbation of the base flow. The parameters used are the same as in figure 4.

of Baumert & Muller (1995) for the low- and medium-viscosity fluids, corresponding
most likely to De < Deh. However, they report the observation of coexistence of
migrating bands and distorted vortices at the highest shear rate considered. Figure
7(c) shows the sequence of flow obtained for De > Deh. Avgousti et al. (1993) report
having numerical difficulties for a UCM fluid when they take the slightly perturbed
standing wave as their initial condition. Figure 7(c) shows the transition from steady
to oscillatory TVF, and from one oscillatory level to the next. Additional theoretical
and experimental investigations are obviously needed if the flow at still higher shear
rate is to be explored. It is possible that the flow may not remain axisymmetric, a fact
that does not seem to be suggested by the experiments of Baumert & Muller (1995).

4.2. Weakly inertial flow and influence of boundary conditions

The nonlinear behaviour is further examined through the influence of fluid elasticity
in the presence of very weak inertial effects for the postcritical range of the Deborah
numbers, in an attempt to recover the flow sequence observed in the experiment
of Muller et al. (1993). Comparison between theory and experiment is expected to
lead only to qualitative agreement given the relatively low number of normal stress
modes in the 16NDS. A quantitative agreement is possible only if additional modes
are included when inertia is completely neglected. The main objective of the present
section is to compare the flows based on the RF and RR formulations.

Consider the flow with relatively small inertia, and set Re = 0.004. Also let
Rv = 3.75 and ε = 0.0625 corresponding, respectively, to the viscosity ratio of the
fluid and the gap-to-radius ratio used in the experiment (Muller et al. 1993). A more
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Figure 7. Time evolution of the axial velocity for 16 < De < 21. The flow for each shear rate level
is obtained using the flow of the previous (lower) level as initial conditions. The parameters used are
the same as in figure 4. The figure is subdivided into three segments of 18 000 s period each. Steady
TVF is always reached during the first period (a) for the range 16 < De < 18.7. Oscillatory instability
develops towards the end of the second period (b) for the range 18.6 < De < 19.27. Transition to
periodic behaviour occurs some time during the third period (c) for the range 19.26 < De < 21.

detailed account of the experimental conditions and parameters is given in the next
section. Although the wavenumber is not specified in the experiment, it is set equal
to k= 4 based on wavenumbers reported in other experiments on TCF of viscoelastic
fluids (Baumert & Muller 1995). Thus, only De will be varied. The flow is examined
as De is increased from zero (Newtonian level). Referring to figure 3, it is seen that
for De=E= 0 CF is unconditionally stable to any perturbation since Re � 1 in
the present case. This situation remains practically unchanged until De reaches the
theoretically predicted critical value, Dec = 29.7 or 29.3, depending on whether the
RF or RR boundary conditions are used. These values are based on the purely elastic
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Figure 8 (a). For caption see facing page.

linear stability analysis. At this point, the base flow is supposed to lose its stability,
but this is numerically detected at slightly higher De values. Since inertia effects are
small (Re = 0.004), one observes an exchange of stability between the base flow
and oscillatory TVF, since no steady TVF can set in the absence of inertia. As the
Deborah number is increased beyond the critical value, the amplitude of oscillation
increases. The resulting sequence of flows is identified through the Fourier spectra
shown in figures 8(a) and 8(b) for the calculation based on the RF and RR boundary
conditions, respectively. The range of Deborah numbers studied is the same as in the
experiment: 32 < De < 53, and should be compared with that reported in figures
7–10 of Muller et al. (1993), where it is noted that De = 0.911DeMuller .

Theoretically, oscillatory TVF is expected to emerge at De = 29.3 for the RF
formulation; in practice, however, it is detected at a higher Deborah number. At
De = 33, the corresponding Fourier spectrum shown in figure 7(a) clearly displays
periodic motion after the base flow becomes unstable. This periodic behaviour persists
as De increases. The flow oscillates around the origin (CF), with amplitude that
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Figure 8. Highly elastic overstability for a Boger fluid (Rv= 3.75) with vanishingly weak
inertia (r= 10−6) and wavenumber k= 4. The Fourier spectrum in the postcritical range for (a)
De > Dec = 29.7 based on the RF conditions, and (b) De > Dec = 29.3 based on the RR conditions.

increases as De increases. The spectrum shows the fundamental frequency and six
odd harmonics. Additional harmonics emerge upon further increase of the Deborah
number as shown for De = 39.7. Further increase in the elasticity level (De = 41.2)
leads (most apparently) to a doubling in the period as depicted in the figure. It is
not easy, in fact, to establish whether one is dealing with a bifurcation into period-2
motion or quasi-periodic behaviour on a torus. At De = 43.57, the power spectrum
indicates clearly the presence of chaotic motion. A very similar sequence of flows is
obtained on the basis of the RR formulation. The qualitative similarity is obvious
from figure 7(b). Although the two formulations predict that the oscillatory TVF sets
in at essentially the same critical Deborah number (29.3 vs. 29.7, for the RR and
RF conditions, respectively), the emergence of higher harmonics, subharmonics and
chaos occurs at higher De values for the RR formulations (figure 7b). This confirms,
once again, that stick conditions tend to delay destabilization.
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The sequence of flows predicted by the present model is clearly comparable to that
reported by Muller et al. (1993). Experiment predicts a loss of stability of the origin at
a critical Deborah equal to 32.3 while the present formulation gives Dec = 29.7. Direct
quantitative comparison of the actual velocity amplitude is impossible since not all
experimental parameters are available. It is possible that the experiment was in fact
not conducted at fixed Reynolds number, and that De was increased by increasing Ω.
Both theory and experiment predict the increase in amplitude of the velocity signal,
the emergence of higher harmonics in the Fourier spectrum, and eventually that of
subharmonics (corresponding to the onset of period doubling) as De increases.

4.3. Purely elastic overstability and influence of higher-order modes

The experimental measurements of Muller et al. (1993) were conducted under con-
ditions of vanishingly small inertia. A close quantitative comparison between theory
and experiment becomes possible when a modified twenty-mode dynamical system
(20NDS) is used (Khayat 1997), which accounts for additional higher-order modes
in the most influential normal stress components (that lead to the Weissenberg rod-
climbing phenomenon). The model is thus adequate for the flow of a highly elastic
fluid (with inertia neglected).

Not all the experimental flow parameters needed for the theory were explicitly
reported in Muller et al. (1993). The test fluid used in the experiment has a (constant)
viscosity η = 162 Pa s, and consists of 1000 p.p.m. high-molecular-weight polyisobuty-
lene, dissolved in a viscous, low-molecular-weight polybutene of viscosity ηs = 128 Pa s.
In this case, the solvent-to-polymer viscosity ratio Rv= 3.76. The fluid relaxation time,
λ, varies depending on the rheological technique used to measure it. Steady shear flow
data give λ = 3.3 s, while transient relaxation experiments lead to 10.9 s (Muller et al.
1993; Baumert & Muller 1995). In the calculations below, the value of λ is fixed by
fitting one experimental point with theory. The inner and outer cylinder radii were
8 and 8.5 cm, respectively, so that ε = 0.0625. Although the inner cylinder angular
velocity Ω was not explicitly given in the experiment, its value can be inferred from
the range of experimental Deborah numbers DeMuller = 2Ωλ(1 + ε)2/[(1 + ε)2 − 1]
used by Muller et al. (1993). Note that DeMuller(ε → 0) = De as defined in (4). It
appears that there was only one fluid used throughout the experiment, and DeMuller

was probably varied by varying only the inner cylinder speed, Ω. Hence, from the
range of DeMuller values reported, the corresponding values of the inner cylinder speed
is given by Ω = DeMuller/77.06 for λ = 4.4 s. Muller et al. (1993) reported that the
highest Reynolds number, Re, reached in the experiment was of the order 7 × 10−3.
Indeed, if one considers the value of Ω corresponding to the highest Deborah number
reported (DeMuller = 54.5), one finds that Re = 2.86 × 10−3 (assuming the density
ρ ≈ 1 g cm−3).

The experimental wavenumber, k, at which overstability is first observed, was
also not reported by Muller et al. (1993); its measurement may have been difficult
under transient conditions. Its exact value, however, is not crucial since Dec does
not strongly depend on k. This is suggested by linear stability analysis and the
flatness of the marginal stability curves around the minimum value of the critical
Deborah number, over a wide range of practical values: k ∈ [4, 8] for Rv = 3.76.
The wavenumber is taken equal to km = 4.85, which corresponds to Dec = Demc = 32
as predicted by the linear stability analysis. This value is also close to wavenumbers
reported in other experiments on TCF of viscoelastic fluids (Larson 1992). Thus, as
in the experiment of Muller et al. (1993), only De will be varied (by varying Ω) in the
following calculations and results.
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4
as a function of De.

Consider the flow as De is increased from zero (Newtonian level). Linear stability
analysis indicates that CF is unconditionally stable for De < 32. In the absence of
inertia, an exchange of stability takes place between CF and oscillatory TVF since
no steady TVF can set in. The experimental critical value of the Deborah number at
which oscillatory motion is first detected is equal to 32.3, and happens to be slightly
larger than the theoretical value. As De is increased beyond the critical value, the
amplitude of oscillation increases, confirming the existence and the stability of the
Hopf bifurcation, in agreement with experiment. Calculations are carried out for the
same range of Deborah numbers as in the experiment: 32 < De < 50. At De= 32.5,
the velocity signature and corresponding Fourier spectrum display periodic motion
after CF becomes unstable. The amplitude of oscillation remains relatively small
(0.008 cm s−1). The power spectrum indicates the presence of a dominant frequency
of 0.02 Hz and a weak second harmonics. This periodic behaviour persists as De
increases, with the flow oscillating around the origin (CF). At De = 43.57, the motion
remains periodic, with an increase in amplitude to 0.052 cm s −1. There is an increase
in the fundamental frequency to 0.0298 Hz and the emergence of four significant even
and odd harmonics. This trend persists as De is further increased with the eventual
emergence of additional harmonics.

Figure 9 shows the Hopf bifurcation for the square of the velocity amplitude based
on the twenty-mode model 20NDS, and the measurements from Muller et al. (1993).
Both experiment and theory indicate that the amplitude of oscillation grows like
(De − Dec)1/2, in agreement with asymptotic analysis in the limit De → Dec. Figure
10 displays the dependence of the dominant frequency and its harmonics on the
Deborah number. The frequency tends to increase with De almost linearly. Unlike
the amplitude, the frequency exhibits a jump at the critical Deborah number. This
means that any initial weak velocity amplitude at the onset of oscillatory TVF has
a dominant frequency that is relatively easy to detect. The agreement between the
computed and measured frequencies is obvious from the figure. The apparent growing
disagreement for the higher harmonics is to be expected. Any initial discrepancy at
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the dominant frequency level is simply amplified as it is multiplied by two for the
second harmonics, by three for the third harmonics and so on.

5. Discussion and concluding remarks
A dynamical system approach is proposed for the simulation of finite-amplitude

TVF in the narrow-gap limit of a viscoelastic fluid of the Oldroyd-B type. This
rather elementary Oldroyd-B constitutive model does not account for the rate-of-
strain dependence of transport coefficients (viscosity and relaxation time), nor does
it include the spectrum of relaxation times usually characteristic of polymeric fluids.
However, this constitutive model is adopted in this study for at least four main
reasons. First, since the aim of the study is to examine the influence of elasticity on
the stability of TVF, the Oldroyd-B model does represent adequately highly elastic
(Boger) fluids, for which the viscosity remains sensibly constant over a wide range
of shear rates. A polyacrilamide solution in a maltose syrup/water mixture typically
constitutes such a fluid (Walters 1980). Second, the Oldroyd-B constitutive equation is
one of the simplest viscoelastic laws that accounts for normal stress effects (which lead
to the Weissenberg rod-climbing phenomenon), which are responsible for the periodic
phenomena arising in viscoelastic fluids. Other more realistic phenomenological or
molecular-theory-based models (Bird et al. 1987; Tanner 1983) will likely lead to a
different stability picture (Larson 1989). For instance, the presence of shear thinning,
not accounted for by the Oldroyd-B equation, has a destabilizing effect since the
effective Reynolds number increases as the viscosity decreases with increasing shear
rate (Khayat 1996; Larson 1989). Third, the present formulation is a nonlinear
stability analysis, which emphasizes the interplay between inertia and normal stress
effects during the transition from CF to TVF. Nonlinear behaviour is reflected in the
convective terms in the momentum equation and the upper-convective terms in the
Oldroyd-B equation. Fourth, and most importantly, most experimental measurements
and flow visualization so far reported on the TVF of viscoelastic fluids have been
conducted on Boger fluids. Comparison between theory and experiment becomes
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possible when the Oldroyd-B constitutive equation is used. However, only the inclusion
of a distribution of relaxation times makes the constitutive model realistic.

The nonlinear dynamical system is derived by expanding the flow field in double
Fourier series in space for the rigid–free (RF) boundary conditions, and Fourier/
Chandrasekhar series for the rigid–rigid (RR) conditions. The set of ordinary differ-
ential equations, governing the time-dependent coefficients, is obtained after applying
the Galerkin projection method, and adopting a suitable truncation to close the
hierarchy of equations. The more severe truncation level used in the previous work
(Khayat 1995c) led to a system (6NDS) derived by neglecting higher-order normal
stresses terms. However, these terms tend to become significant for highly elastic flows
or in the limit Re → 0. The current 16NDS takes into account more effectively the
influence of inertia and normal stresses; thus allowing direct comparison with the
experiment of Baumert & Muller (1995). Good agreement was found, as the theory
is capable of predicting conditions for monotonic and oscillatory transitions from
CF and TVF. This also allows the assessment of the influence of the higher-order
modes neglected previously, which are found to make a significant difference only for
highly elastic fluids. The RF and RR boundary conditions lead essentially to the same
qualitative stability and bifurcation pictures, and flow sequences of the transition to
oscillatory TVF similar to the one observed by Muller et al. (1993). However, the RR
conditions give much better agreement with experiment. An even better quantitative
agreement with the experiment of Muller et al. (1993) was finally achieved when 20
modes were included (20NDS).

The close quantitative agreement between theory and experiment may be somewhat
fortuitous given the uncertainty surrounding experimental parameters on the one
hand, and the lack of a universal and accurate constitutive model for viscoelastic
fluids on the other. Additional sources of discrepancy between theory and experiment
are related to limitations of both Newtonian and viscoelastic flow formulations.
The lack of a theory capable of predicting the value of the axial wavenumber, k,
constitutes a major difficulty. The prediction of k remains an unresolved issue (in
a given formulation, it is usually simply imposed from experimental observation).
In the case of viscoelastic TCF, however, the measurement of k is difficult under
transient flow conditions (Baumert & Muller 1995). Other parameters and variables
are also difficult to obtain from the experiment of Muller et al. (1993) and had to
be deduced. In particular, the relaxation time of the fluid can depend on the type
of rheological device to measure it. In the calculations its value falls between two
values reported by Muller et al. (1993) and was determined by forcing the theoretical
curve to pass through one experimental point. Additional uncertainty originates
from the type of constitutive model used. Although the Oldroyd-B equation predicts
the behaviour of constant-viscosity highly elastic fluids, it does not incorporate the
spectrum of relaxation times that is characteristic of real fluids. More complicated
constitutive equations, accounting for the nonlinear dependence of the transport
coefficients on the rate-of-strain tensor, can also be used within the framework of the
present formulation. The Oldroyd-B model accounts only for nonlinearities stemming
from the upper-convective terms in the constitutive equation. Another source of
discrepancy may originate from end effects in the Taylor–Couette apparatus that
have been neglected in the present formulation. The narrow-gap approximation is
also a limiting assumption. Inertia effects can also play an influential role despite
the fact that the experiment was conducted at a vanishingly small Reynolds number
(Re < 10−2). In general (Khayat 1995a), the presence of inertia, no matter how small
it may be, prohibits the base flow from losing its stability to the overstable mode.
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Instead, the base flow loses its stability first to steady (and not oscillatory) TVF since
there is always a finite range of Re values over which the branches corresponding to
steady TVF are stable.

Finally, the issue of non-axisymmetric modes is important; these modes are ne-
glected in the present study. Linear stability analysis suggests that non-axisymmetric
modes tend to be more unstable than axisymmetric modes, and it is only expected
that their inclusion should make the formulation and results more realistic. One
is then faced with the difficulty of finding the fully three-dimensional solution of a
highly nonlinear problem, which, even in the limit of the Navier–Stokes equations, the
Newtonian fluid community is still grappling with. More importantly, extensive exper-
iments have been constantly suggesting that axisymmetric TVF of a viscoelastic fluid
is always the one observed before non-axisymmetric WVF is observed. The agreement
between the proposed axisymmetric theory and experiment seems to confirm this ob-
servation. However, it would be näıve to believe that the present study constitutes
other than just the beginning or part of ongoing efforts to understand viscoelastic
behaviour in the transition regime. In fact, the inclusion of non-axisymmetric modes
would lead to worse agreement with experiment! This apparent paradox is due to
the fact that, if non-axisymmetric modes are included, a more accurate constitutive
model must also be used.

Let us first emphasize that all experimental studies on the TCF of polymeric fluids
that we are aware of seem to indicate that, for a wide range of the Elasticity number
E, (axisymmetric) TVF is always observed before the onset of (non-axisymmetric)
WVF (Baumert & Muller 1995, 1999; Muller et al. 1993; Stock et al. 1992). Muller
and coworkers have been conducting extensive experimental measurements and visu-
alization on the TCF of polymeric solutions of low and high levels of elasticity, for the
narrow and wide gaps. Their earlier findings indicate that: ‘In the medium viscosity
fluid, the lowest shear rate transitions were from the base flow to steady axisymmet-
ric counter-rotating vortices; at moderate shear rates, the vortices are preceded by
an oscillatory flow; at the highest rates examined, the vortices become stronger but
more irregular. . . Under all conditions, the flow remained axisymmetric’ (Baumert &
Muller 1995). They also acknowledge that these observations are in contradiction with
theoretical predictions, which indicate that non-axisymmetric disturbances are more
dangerous than axisymmetric ones. However, Baumert & Muller (1995) insist that
they consistently observe axisymmetric, rather than non-axisymmetric, disturbance
flows. Also, examination of sequences of images of the gap captured at intervals of
1/30 s and longer did not reveal non-axisymmetry. Further, no waviness was apparent
under ambient illumination.

Recently, Baumert & Muller (1999) confirmed their earlier observations by extend-
ing their experiments to the wide-gap TCF of two polymeric fluids. They concluded
that as in the narrow-gap studies, in both fluids, the first transition from purely
azimuthal base flow is always to an axisymmetric disturbance flow. This contradicts
somewhat the observations of Groisman & Steinberg (1996, 1997) who reported that
the first transition for highly elastic fluids is to disordered oscillations (or noisy,
non-axisymmetric standing waves). However, Baumert & Muller remark that the
first transition they observe is always to axisymmetric, counter-rotating vortices: they
believe the discrepancy has to do with the extremely long onset and observation
times required to observe the weak, axisymmetric flows reported in their experiment
(Baumert & Muller 1999).

Then, where does the discrepancy between non-axisymmetric (linear) stability analy-
sis and experiment come from? In other words: why does the axisymmetric theory
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give better agreement with experiment? As mentioned earlier, the answer seems to
lie mainly in the choice of an adequate constitutive viscoelastic model. The present
and existing axisymmetric linear stability analyses, for a single-relaxation-time fluid,
give a critical shear rate that corresponds closely to the experimental value. The
non-axisymmetric analysis for the same fluid gives a critical shear rate 30–40% lower
than the axisymmetric analysis. Larson et al. (1994) carried out axisymmetric linear
stability analysis on a fluid with a distribution of relaxation times, and found that
instabilities should occur at a shear rate higher than the experimental value. Thus, the
inclusion of a spectrum of relaxation times tends to increase the value of the critical
shear rate for instability, and the inclusion of non-axisymmetric modes tends to lower
the critical shear rate. They attribute the good agreement between axisymmetric
analysis and experiment to a ‘partial cancellation of the two errors’ induced by the
neglect of non-axisymmetric modes and the inclusion of only one relaxation time in
the constitutive model. This suggests that both non-axisymmetric modes and a more
accurate constitutive model, which includes a spectrum of relaxation times, must be
included to achieve an accurate formulation. At this time we are not aware of such a
theory.

In conclusion, the current axisymmetric formulation demonstrates the usefulness of
the low-dimensional approach in describing the complex phenomena arising from the
interaction between inertia and elasticity in TCF. The study is the first attempt to lead
to successful comparison and agreement with experiment. There is still no other theory
that predicts (qualitatively or quantitatively) what is observed experimentally. Part of
the reason for this lack of success may be the insistence of previous authors on seeking
an ‘exact’ solution. Of course, higher-order modes in the solution representation,
including non-axisymmetric modes, should eventually be included if a more accurate
description is sought. However, even if a three-dimensional solution is found to
the governing equations, there is no guarantee that it will lead to better agreement
with experiment because of the uncertainty surrounding the constitutive equation.
There is a lot of work that remains to be done: both non-axisymmetric modes and
a spectrum of relaxation times for fluid behaviour must be included if a closer
agreement with experiment is sought. However, the more accurate formulation may
most likely confirm further the findings of Muller et al. that axisymmetric modes, and
not non-axisymmetric modes, are the most dangerous modes.

The financial support of the Natural Sciences and Engineering Research Council
is gratefully acknowledged. The author would also like to thank J. M. Floryan and
A. Straatman for their helpful comments on the manuscript.

Appendix A. Solution expansion for the RF formulation (16NDS)
In this Appendix the Fourier modes used for the solution of (5)–(14) and the

RF boundary conditions are listed for the velocity components, pressure and stress
components. Only the two dominant modes are kept for each representation. Thus,

ux(x, z, t) = bu11
x (t) sin (πx) + u12

x (t) sin (2πx)c cos (kz), (A 1)

uy(x, z, t) = u01
y (t) sin (πx) + u02

y (t) sin (2πx)

+bu11
y (t) sin (πx) + u12

y (t) sin (2πx)c cos (kz), (A 2)

uz(x, z, t) = bu11
z (t) sin (πx) + u12

z (t) sin (2πx)c sin (kz), (A 3)
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p(x, t) = bp11(t) cos (πx) + p12(t) cos (2πx)c cos (kz); (A 4)

τii(x, t) = bτ11
ii (t) cos (πx) + τ12

ii (t) cos (2πx)c cos (kz), i = x, y, z (no sum), (A 5)

τxy(x, t) = τ01
xy(t) cos (πx) + τ02

xy(t) cos (2πx)

+bτ11
xy(t) cos (πx) + τ12

xy(t) cos (2πx)c cos (kz), (A 6)

ταz(x, t) = bτ11
αz(t) sin (πx) + τ12

αz(t) sin (2πx)c sin (kz), α = x, y. (A 7)

Appendix B. Solution expansion for the RR formulation (16NDS)
In this Appendix the Chandrasekhar modes used for the solution of (5)–(14) and

the RR boundary conditions are listed for the velocity components, pressure and
stress components. Only the two dominant modes are kept for each representation.
Thus,

ux(x, z, t) = bu11
x (t)Φ1(x) + u12

x (t)Φ2(x)c cos (kz), (B 1)

uy(x, z, t) = u01
y (t)Φ1(x) + u02

y (t)Φ2(x) + bu11
y (t)Φ1(x) + u12

y (t)Φ2(x)c cos (kz), (B 2)

uz(x, z, t) = bu11
z (t)Φ′1(x) + u12

z (t)Φ′2(x)c sin (kz), (B 3)

p(x, t) = bp11(t)Φ
′
1(x) + p12(t)Φ

′
2(x)c cos (kz); (B 4)

τii(x, t) = bτ11
ii (t) cos (πx) + τ12

ii (t) cos (2πx)c cos (kz), i = x, y, z (no sum), (B 5)

τxy(x, t) = τ01
xy(t)Φ

′
1(x) + τ02

xy(t)Φ
′
2(x) + bτ11

xy(t)Φ
′
1(x) + τ12

xy(t)Φ
′
2(x)c cos (kz), (B 6)

ταz(x, t) = bτ11
αz(t)Φ1(x) + τ12

αz(t)Φ2(x)c sin (kz), α = x, y, (B 7)

where Φ1(x) and Φ2(x) are, respectively, the even and odd Chandrasekhar functions
given by (Chandrasekhar 1961)

Φ1(x) =
cosh (λx)

cosh (λ/2)
− cos (λx)

cos (λ/2)
; Φ2(x) =

sinh (µx)

sinh (µ/2)
− sin (µx)

sin (µ/2)
. (B 8)

The condition of orthogonality and the no-slip boundary conditions lead to the
following equations for the constants λ and µ:

tanh (λ/2) + tan (λ/2) = coth (µ/2)− cot (µ/2) = 0. (B 9)

The functions Φ
′
1(x) and Φ

′
2(x) are defined by

Φ′1(x) =
sinh (λx)

cosh (λ/2)
+

sin (λx)

cos (λ/2)
; Φ′2(x) =

cosh (µx)

sinh (µ/2)
− cos (µx)

sin (µ/2)
. (B 10)

Note that the range of x values is, for convenience, taken to be [− 1
2
,+ 1

2
] instead of

the range [0,+1] used in the main text.
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